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Connected-annular-rods photonic crystals (CARPCs) in both triangular and square lattices are proposed to en-
hance the two-dimensional complete photonic bandgap (CPBG) for chalcogenide material systems with moderate
refractive index contrast. For the typical chalcogenide-glass–air system with an index contrast of 2.8:1, the opti-
mized square lattice CARPC exhibits a significantly larger normalized CPBG of about 13.50%, though the use of
triangular lattice CARPC is unable to enhance the CPBG. It is almost twice as large as our previously reported
result [IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016)]. Moreover, the CPBG of the square-lattice
CARPC could remain until an index contrast as low as 2.24:1. The result not only favors wideband CPBG ap-
plications for index contrast systems near 2.8:1, but also makes various optical applications that are dependent
on CPBG possible for more widely refractive index contrast systems. © 2018 Chinese Laser Press

OCIS codes: (230.5298) Photonic crystals; (160.5293) Photonic bandgap materials; (160.2750) Glass and other amorphous

materials; (230.1480) Bragg reflectors; (260.5430) Polarization.

https://doi.org/10.1364/PRJ.6.000282

1. INTRODUCTION

Chalcogenide materials with a moderate refractive index are fas-
cinating due to their unique features of both broad infrared
transparency and highly nonlinear properties [1–5]. Making
use of the photonic band gap (PBG) property of chalcogenide
photonic crystals (PCs), various powerful functional optical de-
vices have been designed or fabricated [2,3,6–14]. If the PBG
is increased, the performance of these PC devices would be
further improved. However, currently both the theoretical
design and fabrication of three-dimensional (3D) PCs are chal-
lenging. Therefore, much attention has been put into the two-
dimensional (2D) chalcogenide PC [2,3,6–14]. In the 2D PC,
the modes of light waves could be decomposed into transverse-
electric (TE) and transverse-magnetic (TM) polarizations.
Thus, a 2D PBG that overlaps with TE and TM modes, or
the 2D complete PBG (CPBG), is especially desirable for ap-
plications [15]. However, compared to high-index materials
such as silicon or GaAs, it is hard to obtain a wide 2D CPBG
with chalcogenide materials due to their moderate refractive
index, which are typically within the range of 2 to 3 [16].

Therefore, various geometry-adjusting methods have been
proposed to enhance the 2D CPBG [15,17,18]. Previous in-
vestigations have suggested that while the isolated dielectric
rods structure favors TM PBGs, the connected air-hole struc-
ture is more desirable for TE PBGs [19]. Thus connected-
solid-rods chalcogenide PCs with a triangular lattice that
benefits from both characteristics has been proposed to en-
hance the 2D CPBG, which leads to a normalized CPBG (de-
fined as the gap-to-midgap ratio) of 5.4% with a chalcogenide
air index contrast of 2.8:1 [17]. Recently, using a square lattice,
the connected-solid-rods chalcogenide PC is found to be able
to support a large normalized CPBG of 7.4%, and the CPBG
could remain existing until a lower index of 2.4:1 [15].
Although improvements have been achieved, further extending
the CPBG width and reducing the index contrast still needs
to be investigated compared to either the broad transparent
spectral width or their corresponding refractive index ranges
of the chalcogenide materials.

In this paper, connected-annular-rods photonic crystals
(CARPCs) in both triangular and square lattices are proposed

282 Vol. 6, No. 4 / April 2018 / Photonics Research Research Article

2327-9125/18/040282-08 Journal © 2018 Chinese Laser Press

mailto:houjin@mail.scuec.edu.cn
mailto:houjin@mail.scuec.edu.cn
mailto:houjin@mail.scuec.edu.cn
mailto:houjin@mail.scuec.edu.cn
https://doi.org/10.1364/PRJ.6.000282


to enhance the 2D CPBG for moderate refractive index con-
trast material systems. The CARPC is proposed based on pre-
vious research of the connected-solid-rods chalcogenide PCs
[15,17] and also the well-known annular PCs [20–23]. The
latter was first proposed to obtain a large CPBG with high
refractive index materials [20,22]. Here, by introducing the
annular PC into the connected-solid-rods chalcogenide PCs,
the proposed CARPC could further enhance the 2D CPBG
with moderate contrast. We find that for typical chalcoge-
nide-glass–air systems with index contrast of 2.8:1, which could
be found in AMTIR-2 (arsenic selenide glass) near the wave-
length of 2.3 μm, the square-lattice CARPC could effectively
enhance the normalized CPBG, although the triangular-lattice
CARPC is not able to enhance the CPBG. Through mapping
the structural parameters of square-lattice CARPC, a maximum
normalized CPBG of 13.50% could be obtained. This value is
almost twice as large as the record that we previously reported
[15]. Moreover, the CPBG of the square-lattice CARPC could
remain until an index contrast as low as 2.24:1. The proposed
structure not only favors wideband CPBG applications for
index contrast systems near 2.8:1, but also makes various op-
tical applications based on CPBG possible for lower moderate
index contrast systems [24–26].

2. STRUCTURES OF CARPC

The schematic structures of the proposed CARPC are shown
in Fig. 1. The CARPC with a triangular lattice is shown in
Fig. 1(a), and Fig. 1(b) shows the CARPC with a square lattice.
The black color represents chalcogenide glass and the white
color represents air. To be consistent with the previous reports
[15,17], the refractive index of the chalcogenide glass is as-
sumed to be of a moderate value of 2.8, and that of air is always
1. Also, as denoted in Fig. 1, a is the lattice constant. The outer
and inner radii of the chalcogenide glass–air annular rods are R
and r, respectively. The thickness of the chalcogenide veins that
connect the annular rods is D.

As shown in Fig. 1, there are three key structural parameters
for the triangular- and square-lattice CARPCs. They are D, R,
and r. To obtain the CPBG characteristics of the proposed two
types of PCs with these three structural parameters, the fully
vectorial eigenmodes of Maxwell’s equations are calculated
by a preconditioned conjugate-gradient minimization of the
block Rayleigh quotient in a planewave basis with periodic
boundary conditions [27]. In the computations, each of the

three key structural parameters is first scanned with a step
of 0.01a to obtain a preliminary view of the normalized
CPBG distribution characteristics. Then to make sure the
maximum normalized CPBG would not be missed, the param-
eter step is reduced to 0.005a for the interested structural
parameter zones where extremely large CPBGs are located.
Therefore, to distinguish small changes of structural parameters
and also to obtain reasonable accuracy, a high resolution of 64
grids with a mesh size of 3 for a lattice period is adopted.

3. CPBG ENGINEERING

Based on the previous investigations, the maximum normalized
CPBG for connected chalcogenide-rod triangular-lattice PC is
obtained between band 3 and band 4 [15,17]. Therefore, the
CPBGs between these two bands are also selected as the opti-
mized object for the proposed CARPC with triangular lattice.
Because the focus of this research is to investigate whether using
the feature of annular PCs in addition with the connected PCs
could further enhance the CPBG, we focus on the structural
parameters related to annular chalcogenide–air rods, which
are R and r. As shown in Figs. 2(a)–2(c), typical normalized
CPBG contour maps as functions of R and r are plotted for
D of 0, 0.06a, and 0.12a, respectively. In addition, to know
how D and r together influence the CPBG, a contour map as
a function of these two parameters is plotted for the optimized
R of 0.175a in Fig. 2(d). From systematically sweeping the
structural parameters of the triangular lattice CARPC, a maxi-
mum normalized CPBG of 5.9% is obtained with R � 0.175a,
r � 0, and D � 0.06a, as shown in Figs. 2(b) and 2(d). The
normalized PBG is defined as the gap-to-midgap ratio, in
which gap is the normalized frequency difference between
the two boundary bands, and the midgap means the middle
normalized frequency of the PBG. Because r of the optimized

Fig. 1. Schematic structures of the proposed CARPCs. The black
color represents chalcogenide glass, and the white color represents air.
(a) Triangular-lattice CARPC. (b) Square-lattice CARPC.

Fig. 2. Typical normalized CPBG bandwidth contour maps for
CARPC with the triangular lattice. (a)–(c) Contour maps as functions
of outer radius (R) and inner radius (r) for vein thickness (D) of 0,
0.06a and 0.12a, respectively. (d) Contour map as a function of vein
thickness (D) and inner radius (r) for an optimized outer radius (R) of
0.175a.
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PC is 0, that structure is actually the same with the case of
connected-solid-rods chalcogenide PC with the triangular lat-
tice, and the obtained maximum normalized CPBG here is also
the same as the previously reported [15]. From Figs. 2(a)–2(c),
for each D there exists an optimized pair of R and r to support a
maximum CPBG. It indicates that introducing annular rods
does have an influence on the CPBG. However, one could
easily find that, as r increases from zero, the normalized
CPBG widths all become narrower. Similar phenomena would
be also observed in Fig. 2(d). Hence, for the proposed CARPC
with triangular lattice, unfortunately, it would not enhance the
CPBG in contrary to the expectation.

On the other hand, for square-lattice CARPC, how could
the annular structure influence the CPBG, and will it also not
enhance the CPBG? The three key structural parameters of
square-lattice CARPC are also tailored to obtain the normalized
CPBG distribution characteristics. In this PC, based on pre-
vious investigations [15], the CPBGs between band 5 and
band 6 are selected as the optimizing subjects. As shown in
Figs. 3(a)–3(c), typical normalized CPBG contour maps as
functions of R and r are plotted for D of 0, 0.05a, and
0.10a, respectively. And Fig. 3(d) also shows a contour map
as a function of D and r for an optimized R of 0.33a.
From scanning of the structural parameters of square-lattice
CARPC, a maximum normalized CPBG of 13.50% is obtained
for R � 0.33a, r � 0.13a, and D � 0.05a, as shown in
Figs. 3(b) and 3(d). This value is almost twice as large as
the record that we previously found in a connected-solid-rods
PC [15], with which only R and D were tailored to enhance the
CPBG. Actually, the connected-solid-rods PC of maximum
normalized CPBG bandwidth in Ref. [15] is a special case
of our proposed square-lattice CARPC, with unchanged
r � 0. From Fig. 3, we could find that the maximum

normalized CPBGs are all located in the center of the figures.
It indicates that to obtain the maximum normalized CPBG in
square-lattice CARPC, all three key structural parameters in-
cluding r should be carefully chosen. And the use of annular
rods in square-lattice CARPC indeed could enhance the CPBG
for an index contrast system of 2.8:1. Thus, for a moderate
refractive-index contrast of 2.8:1, the largest CPBG could be
obtained in CARPC with square lattice other than with
triangular lattice.

4. ANALYSIS AND DISCUSSION

To understand the physics behind different characteristics of
CPBG enhancement for triangular-lattice and square-lattice
CARPCs, the photonic band structures with maximum nor-
malized 2D CPBGs for the optimized two types of CARPCs
are compared. As shown in Fig. 4, the yellow and green shad-
ows together denote the PBG for TM modes, the yellow and
cyan shadows denote the PBG for TE modes, and the yellow
shadow denotes the 2D CPBG.

Figure 4(a) shows the photonic band structure with the
maximum normalized 2D CPBG for triangular-lattice
CARPC. The band structure is obtained with R � 0.175a,
r � 0, and D � 0.06a, which is corresponding to the maxi-
mum normalized 2D CPBG shown in Figs. 2(b) and 2(d).
For the optimized triangular lattice CARPC, the TE PBG
ranges from normalized frequency 0.391390485146213 (with
a wave vector at K point) to 0.497226160747991 (with a
wave vector at M point), which denotes a large normalized
TE PBG of about 23.82%. Meanwhile, the TM PBG ranges
from normalized frequency 0.468717620098929 (with a
wave vector at Γ point) to 0.520301536238606 (with a wave
vector at K point), which also denotes a large normalized
TM PBG of about 10.43%. Desperately, for this optimized
triangular lattice CARPC, only about half of the TM PBG
could be overlaid with a fourth portion of the TE PBG.
Therefore, the CPBG for the triangular-lattice CARPC only
ranges from normalized frequency 0.468717620098929 to
0.497226160747991, which implies a maximum normalized
CPBG of only 5.90% [15].

Fig. 3. Typical normalized CPBG bandwidth contour maps for
CARPC with the square lattice. (a)–(c) Contour maps as functions
of outer radius (R) and inner radius (r) for vein thickness (D) of 0,
0.05a, and 0.10a, respectively. (d) Contour map as a function of vein
thickness (D) and inner radius (r) for an optimized outer radius (R) of
0.175a.

Fig. 4. Photonic band structures for the optimized CARPCs with
maximum normalized 2D CPBGs. (a) Triangular lattice CARPC with
D � 0.06a, R � 0.175a, and r � 0, which is the same with the
maximum normalized 2D CPBG shown in Figs. 2(b) and 2(d).
(b) Square-lattice CARPC with D � 0.05a, R � 0.33a, and
r � 0.13a, which is the same with the maximum normalized 2D
CPBG shown in Figs. 3(b) and 3(d). The yellow and green shadows
together denote the PBG for TM modes, the yellow and cyan
shadows together denote the PBG for TE modes, and the yellow
shadow denotes the 2D CPBG.

284 Vol. 6, No. 4 / April 2018 / Photonics Research Research Article



In comparison, Fig. 4(b) shows the photonic band structure
with the maximum normalized 2D CPBG for square-lattice
CARPC. The band structure is obtained with R � 0.33a,
r � 0.13a, and D � 0.05a, which is corresponding to the
maximum normalized 2D CPBG shown in Figs. 3(b) and 3(d).
For the optimized square-lattice CARPC, the TE PBG ranges
from normalized frequency 0.471926285706863 (with a wave
vector at the Γ point) to 0.548004710647034 (with a wave
vector at the M point), which denotes a large normalized
TE PBG of about 14.92%. Meantime, the TM PBG ranges
from normalized frequency 0.478696469439636 (with a wave
vector at the X point) to 0.549261474599597 (with a wave
vector at the M point), which also denotes a large normalized
TM PBG of about 13.73%. More interestingly, most parts of
the TM PBG and those of the TE PBG for square-lattice
CARPC are overlaid, and thus a broad common normalized
frequency zone for CPBG that ranges from normalized fre-
quency 0.478696469439636 to 0.548004710647034 could
be observed, which means a maximum normalized CPBG of
about 13.50%.

To understand the different CPBG enhancement character-
istics of annular holes between triangular-lattice and square-
lattice CARPCs, the typical extreme normalized frequencies
(the top extreme points in the lower dielectric band and bottom
extreme points in the upper air band that fix the CPBG widths)
at CPBG edges and the corresponding normalized CPBG
widths as functions of r are plotted in Fig. 5. Except the chang-
ing structural parameter r, the other two parameters, R and D,
are fixed with the correspondingly optimized CARPC that
supports the maximum CPBG. As shown in Fig. 5(a), the
changing of the CPBG edge frequencies with r is relatively sim-
ple for the triangular lattice CARPCs with R � 0.175a and
D � 0.06a. Amid the increasing of r, the extreme frequency
(top point) of lower dielectric band (band 3) always has a larger
increase rate than the extreme frequency (bottom point) of
upper air band (band 4), thus narrowing the normalized
CPBG.

On the other hand, as shown in Fig. 5(b), for square-lattice
CARPCs with R � 0.33a and D � 0.05a, one may easily find
that there exists a kink point at r � 0.13a in the normalized
CPBG curve. When r is below 0.13a, the extreme frequency
(top point) of lower dielectric band (band 5) has a smaller

increase rate than the extreme frequency (bottom point) of
upper air band (band 6) as r increases, which results in widen-
ing of normalized CPBG. When r is higher than 0.13a, oppo-
sitely, the top of band 5 has a larger increase rate than the
bottom of band 6, which causes a decrease of normalized
CPBG width. The phenomena could be better observed in
the Fig. 6, which shows the evolution of the typical key pho-
tonic bands (band 5 and band 6 that determine the CPBG
widths) for square-lattice CARPCs with fixed R � 0.33a
and D � 0.05a, but different r. From Fig. 6, while the top
extreme frequencies in the lower dielectric band (band 5) al-
ways have the same wave vector at the X point, the bottom
extreme frequencies in the upper air band (band 6) always have
the same wave vector at theM point. And as r increases, the air
filling factor for the CARPC gets larger accordingly, thus mak-
ing all the bands go upward. Specifically, when r is increased
from 0 to 0.1a and 0.13a, the top point in band 5 has a smaller
increase than the bottom point in band 6, which results in wid-
ening of the normalized CPBG. When r is further increased
from 0.13a to 0.15a and 0.2a, oppositely, the top of band
5 has a larger increase rate than the bottom of band 6, which
causes a decrease of normalized CPBG width. Thus, the maxi-
mum normalized CPBG width is obtained at the kink point
of r � 0.13a. Moreover, focusing on the bottom of the
air band (band 6) curve in Fig. 5(b), a huge turning near
r � 0.13a could also be easily found. Therefore, there also
would be a transition happening near the kink point.

To further understand the different CPBG enhancement
characteristics of annular holes between triangular-lattice and
square-lattice CARPCs, the field distributions of the extreme
CPBG edge modes for typical inner radii are plotted and in-
vestigated. Figure 7 shows the typical field distributions of the
extreme CPBG edge modes for the triangular-lattice CARPCs
with fixed R � 0.175a and D � 0.06a, but different r.
One may easily find that while the Ez (the out-of-plane

Fig. 5. Typical extreme normalized frequencies (the top extreme
points in the lower dielectric band and bottom extreme points in
the upper air band which fix the CPBG widths) at CPBG edges
and the corresponding normalized CPBG width as functions of r.
(a) Triangular lattice CARPCs with R � 0.175a and D � 0.06a.
(b) Square-lattice CARPCs with R � 0.33a and D � 0.05a.

Fig. 6. Evolution of the typical key photonic bands (band 5
and band 6 that determine the CPBG widths) for square-lattice
CARPCs with fixed R � 0.33a and D � 0.05a, but different r.
The yellow shadow denotes the maximum normalized CPBG width
that obtained with r � 0.13a, which is the same as that shown in
Fig. 4(b).
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component of the electric field) field distributions of the ex-
treme lower CPBG edge modes at top of band 3 shown in
Figs. 7(a)–7(c) have similar shapes, the Hz (the out-of-plane
component of the magnetic field) field distributions of the ex-
treme upper CPBG edge modes at bottom of band 4 shown in
Figs. 7(d)–7(f ) are also similar. Actually, for triangular lattice
CARPCs, as a typical band structure shown in Fig. 4(a), the
investigated extreme frequency modes of lower CPBG edge
(top of dielectric band) are all with TM polarization, and those
of upper CPBG edge (bottom of air band) are all with TE
polarization. Thus, amid increased r, the extreme frequencies
at both the CPBG edges are monotonically changed. Therefore,
as shown in the Fig. 5(a), the CPBG edge frequencies and the
corresponding normalized CPBG width curves are very pol-
ished, and their changing is also relatively simple. Moreover,
compared with the Figs. 7(d)–7(f ), the Ez fields shown in
the Figs. 7(a)–7(c) are intensely located at the annular rods,
especially at both the outer chalcogenide material zone and
the inner air zone. Thus the modes at the top of dielectric band
are more influenced by the annular holes than the modes at the
bottom of air band. Therefore as shown in the Fig. 5(a), with
the increasing of r, the extreme frequency of lower CPBG band
(band 3) has a larger increase rate than that of upper CPBG
band (band 4).

Relatively, the typical field distributions of the extreme
CPBG edge modes for the square-lattice CARPCs shown in
Fig. 8 are of more complexity. Although the Ez field distribu-
tions of the extreme lower CPBG edge modes at the top of
dielectric band shown in Figs. 8(a)–8(d) have similar shapes,
the field distributions of the extreme upper CPBG edge modes
at the bottom of the air band shown in Figs. 8(e)–8(h) are not
in the same form. Actually, when r is smaller than 0.13a, the
extreme CPBG edge modes are first with TE polarization, as

shown in Figs. 8(e) and 8(f ). When r is over 0.13a, the modes
change to TM polarization, as shown in Figs. 8(g) and 8(h).
Therefore, as we expected previously, a mode transition
happens near r � 0.13a.

More specifically, as shown in the Figs. 8(a)–8(d), all the Ez
fields tend to be more likely located at the outer chalcogenide
dielectric zone. So, as r increases from zero, firstly because r is
with small values, a small increase of r does not affect much.
Thus, the extreme frequency of lower dielectric band (band 5)
shown in Fig. 5(b) has only a smaller increase rate. When r is
bigger, a small increase of r would mean a large decrease of
chalcogenide dielectric volume, which would result in consid-
erable change of the extreme frequency of the lower dielectric
band (band 5), as we also have observed in Fig. 5(b). On the
other hand, for the Figs. 8(e)–8(h), when r is not larger than
0.13a, although the Hz fields are more likely focused on the
annular chalcogenide dielectric zone, there are also considerable
Hz field distributions in the surrounding air zone. As r in-
creases, the amplitude of the surrounding Hz field is getting
large faster. So in Fig. 5(b), the extreme frequency of the upper
air band (band 6) has a larger increase rate than that of the lower
dielectric band (band 5). When r is beyond 0.13a, mode tran-
sition occurs, and the extreme frequency of the upper air band
is all with TM polarization. In that situation, Ez fields are more
likely focused on the surrounding air zone, and only a small
portion of Ez fields retain in the annular chalcogenide rods.
Amid the increasing of r, the Ez field amplitude in the sur-
rounding air zone does not change much, and only that in
the annular chalcogenide dielectric zone has a small increase.
Thus, as observed in Fig. 5(b), the extreme frequency of band
5 has a larger increase rate than that of band 6, which leads to a
decrease of the normalized CPBG width. All these phenomena
are in accordance with previous reports about the photonic
band: if the fields are more focused on air of smaller index or
are less accumulated in the dielectric of higher index, then the

Fig. 7. Typical field distributions of the extreme CPBG edge modes
for triangular lattice CARPCs with fixed R � 0.175a and D � 0.06a,
but different r. (a) and (d) are with the same r � 0. (b) and (e) are with
the same r � 0.02a. (c) and (f ) are with the same r � 0.04a.
(a)–(c) are Ez field distributions of lower extreme CPBG edge modes
at top of band 3 with a wave vector at Γ. (d)–(f ) are Hz field distri-
butions of upper extreme CPBG edge modes at bottom of band 4
with a wave vector at M .

Fig. 8. Typical field distributions of the extreme CPBG edge modes
for square-lattice CARPCs with fixed R � 0.33a and D � 0.05a, but
different r. (a) and (e) are for r � 0. (b) and (f ) are for r � 0.13a.
(c) and (g) are for r � 0.15a. (d) and (h) are for r � 0.20a. (a)–(d) are
Ez field distributions of extreme lower CPBG edge modes at top of
band 5 with a wave vector at X . (e) and (f ) are Hz field distributions of
extreme upper CPBG edge modes at bottom of band 6 with a wave
vector at M . (g) and (h) are Ez field distributions of extreme upper
CPBG edge modes at bottom of band 6 with a wave vector at M .
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dispersion curves would be pulled up to higher frequency more
quickly [28,29].

5. ENHANCED CPBG FOR LOWER
REFRACTIVE-INDEX CONTRAST
CHALCOGENIDE-AIR SYSTEMS

As presented in the previous sections, what is also worth noting
is that the CPBG widths are highly enhanced by using annular
structure in the square-lattice CARPC with a chalcogenide–air
refractive index contrast of 2.8:1. Could this favorable enhance-
ment of the CPBG in the proposed square-lattice CARPC be
further extended to lower chalcogenide–air refractive-index
contrast? As shown in Fig. 9, normalized CPBGs as a function
of refractive index of material for different optimized square-
lattice PCs are plotted. The black curve is for the referenced
connected-solid-rods chalcogenide PC with structural parame-
ters of r � 0, R � 0.33a, and D � 0.1a, which obtained the
maximum CPBG in Ref. [15]. The red curve with solid circles
is for the CARPC with structural parameters of r � 0.13a,
R � 0.33a, and D � 0.05a, which supports the maximum
normalized CPBG for chalcogenide glass index of 2.8 and is
also corresponding to Fig. 4(b). From Fig. 9, although the ref-
erenced connected-solid-rods chalcogenide PC closes its CPBG
with a higher refractive-index contrast of 2.48:1 [15], the
CPBG for the CARPC, which was optimized for the index con-
trast of 2.8:1, can extend to a lower refractive-index contrast of
2.33:1. More specifically, for the refractive index contrast rang-
ing from 2.33 to 4, the proposed optimized CARPCs with a
square lattice all possess a larger CPBG width.

Then, with a chalcogenide–air index contrast of 2.34:1,
which is only 0.01 larger than the close index contrast for
the previously optimized square-lattice CARPC, a further tai-
loring of the structural parameters of the square-lattice CARPC
was performed to explore if the CPBG could be further en-
hanced. The index of 2.34 could be found in As2S3 near
the wavelength of 1535 nm. In this case, an optimized maxi-
mum normalized CPBG of 2.22% could be obtained with
r � 0.16a, R � 0.37a, and D � 0.1a, and its band structure
is shown in Fig. 10(a). As the yellow long shadow zone shown
in the figure, the CPBG is just the same as the TM PBG, and
it ranges from normalized frequency 0.540976218045288
(with a wave vector at the X point) to 0.553136564955634
(with a wave vector at the M point). Meantime, a larger TE
PBG of about 5.61% also could be observed, which ranges
from normalized frequency 0.527381544557749 (with a wave
vector at the Γ point) to 0.55781019442515 (with a wave vec-
tor at the M point). The partial PBGs in the square Γ −M
direction are also labeled in Fig. 10(a). The yellow and green
short shadows together denote the Γ −M partial PBG for TM
modes, the yellow and cyan short shadows together denote
the Γ −M partial PBG for TE modes, and the yellow shadow
denotes the 2D Γ −M partial CPBG. By using the structural
parameters of the new optimized square-lattice CARPC, nor-
malized CPBG as a function of refractive index of material is
also plotted in Fig. 9. As shown by the blue curve with void
circles, the close refractive-index contrast to support CPBG can
be further reduced to as low as 2.24:1. Compared to the other
two curves in Fig. 10, these new structural parameters are
powerful to obtain larger CPBG with index contrasts that
are below 2.42:1. However, for an index contrast larger than
2.42:1 but lower than 2.62, the CPBGs for the new optimized
PC are only larger than the reference PC but narrower than the
optimized CARPC for 2.8:1.

Fig. 9. Normalized CPBG as a function of refractive index of
material for three different optimized square-lattice PCs. The black
curve is for the referenced connected-solid-rods chalcogenide PC with
r � 0, R � 0.33a, andD � 0.1a, which obtained the maximum nor-
malized CPBG reported in Ref. [15]. The red curve with solid circles
denotes the CARPC with r � 0.13a, R � 0.33a, and D � 0.05a,
which obtains the maximum normalized CPBG for chalcogenide glass
of index 2.8 and that is corresponding to Fig. 4(b). The blue curve
with void circles is for the CARPC with structural parameters
r � 0.16a, R � 0.37a, and D � 0.1a, which obtains the maximum
normalized CPBG for chalcogenide glass of index 2.34.

Fig. 10. Photonic band structure, reflectivity spectra, and key
configuration of the time domain simulation for the optimized square-
lattice CARPC of index contrast 2.34:1. (a) Photonic band structure
for CARPC with D � 0.1a, R � 0.37a, and r � 0.16a. (b) TE and
TM reflectivity spectra of the square-lattice CARPC reflector. (c) Key
configurations of the time domain simulation of the reflector. Black
region denotes chalcogenide, while white region denotes air. S denotes
the Gaussian line optical source, andD1 andD2 are two flux detectors,
respectively.
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To further confirm how reliable the CPBGs obtained in the
square-lattice CARPC are, as an example, the polarization-
independent reflector is theoretically demonstrated by directly
making use of the optimized square-lattice CARPC of low
index contrast 2.34:1. As shown in Fig. 10(b), TE and TM
reflectivity spectra of the reflector are calculated by the
MEEP software [30]. Figure 10(c) shows the key configurations
of the time domain simulations. The reflectivity spectra are cal-
culated by doing two simulations. One is performed for the
structure without the PC reflector, which is used for normal-
izing the reflectivity. The other simulation is performed with
the whole structure exactly the same with that shown in
Fig. 10(c), in which the PC reflector is added in the center.
For the latter, when the Gaussian line optical source excites,
light will propagate in the chalcogenide glass zone, then suffer-
ing reflection and coupling at the PC interface. As the light
propagation is along the Γ −M direction, the propagation light
will therefore suffer Γ −M partial PBGs [29,31]. Although
there are only 5 periods in the Γ −M direction, high reflectiv-
ities of nearly unity for frequency band widths of 0.5273 −
0.5578 (c∕a) and 0.52440 − 0.5531 (c∕a) are obtained for
TE and TM polarizations, respectively. The boundary frequen-
cies of the high reflectivity bandwidth shown in Fig. 10(b)
match very well with the Γ −M partial PBGs shown in
Fig. 10(a). Similarly, we have also compared the band struc-
ture of Γ − X partial PBGs with the reflectivity bandwidth
obtained by light propagation along the Γ − X direction of
the PC, and they also match very well. Those phenomena
prove our investigation results are reliable.

In addition, a point cavity center in a square-lattice CARPC
with index contrast of 2.34:1 is also theoretically demonstrated.
It is shown that the cavity could support both TE and TM
resonance modes in the CPBG. Figure 11 shows the quality
factors of the resonance cavity modes as a function of the num-
ber of square rings surrounding the defect, and it also shows the
field distributions of the cavity modes for the two polarizations.

The left upper inset of Fig. 11(a) also shows a schematic struc-
ture of the square-lattice CARPC cavity. The cavity is formed
by filling the center zone of CARPC with chalcogenide glass.
For simplification, we only consider the cavity with a fixed de-
fect, which is surrounded by the first square ring of annular
rods. Outside the cavity zone, there are totally seven square
rings of annular rods surrounding the defect. Actually during
our investigation, we vary the number of the outer square rings
of annular rods N , from 4 to 12 with a step 1. As shown in
Fig. 11(a), increasing the number N , the Q value hugely in-
creases due to existing CPBG of the CARPC. Similar behavior
was previously explained in MIT’s photonic crystal book [29].
And when N is 12, high Q values of 1,559,395 (with normal-
ized frequency of 0.549451784753774) and of 209,870 (with
normalized frequency of 0.548481964312863) are obtained in
the square-lattice CARPC cavity for TE and TM resonance
modes, respectively. In our investigation, the Q values are ob-
tained by using the Harminv command in the MEEP software
[30], accompanied by running very narrow-bandwidth point
sources. Figures 11(b) and 11(c) show the Hz and Ez field dis-
tributions (snapshots) of the resonance cavity with N of 7 for
TE and TM polarization modes, respectively. From these two
figures, both fields are clearly localized around the defect in the
center. We have also made two movies showing TE and TM
resonances in one period time in the cavity. You may check
Visualization 1 and Visualization 2 for clearer observation.
Thus, we could make sure that the CPBG obtained by
CARPC with index contrast 2.34:1 also offers tight optical
confinement.

6. CONCLUSIONS

In conclusion, CARPCs inheriting characteristics from both
annular PC and connected-solid-rods PCs are proposed and
investigated to enhance the 2D CPBG for moderate refractive
index contrast material systems. For typical index contrast of
2.8:1, while the triangular lattice CARPC is not able to en-
hance the CPBG, the optimized square lattice CARPC exhibits
significantly larger normalized CPBG of about 13.50%. The
value is almost twice as large as our previously reported result
[15]. Moreover, the CPBG of the square-lattice CARPC could
remain existing until a record low index contrast of 2.24:1. The
result not only favors wideband CPBG applications for index
contrast systems near 2.8:1, but also makes various optical
applications that rely on CPBG possible for moderate index
contrast systems. Immediately making use of the large CPBG
obtained by square-lattice CARPC of a low index con-
trast 2.34:1, both the polarization-independent reflector and
the point defect microcavity are theoretically demonstrated.
Based on our study in this paper, other useful applications
like polarization-independent waveguide devices and emitters
and slow light fibers in moderate index contrast systems also
can be suitably designed. We also notice that although the
lowest index contrast (2.24:1) to support the 2D CPBG
obtained in this paper is still bigger than the typical lower
boundary chalcogenide–air index contrast (about 2:1), the
steady progress of reduced refractive-index contrast for a
CPBG also suggests that further reducing this contrast in the
future would be possible.

Fig. 11. Quality factor of the square-lattice CARPC cavity as a
function of the number of square rings surrounding the defect and
field distributions of the cavity modes for the two polarizations.
(a) Quality factor of the square-lattice CARPC cavity as a function
of the number of square rings surrounding the defect, and the left
upper inset shows a schematic structure of the square-lattice
CARPC cavity with N of 7. (b) The Hz field for TE cavity mode
having a Q value of 19,234 (see Visualization 1 for a movie of the
resonance). (c) The Ez field for TM cavity mode having a Q value
of 3,989 (see Visualization 2 for a movie of the resonance).
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